Effects of Sub-Lethal Doses of Pyriproxyfen, Fenitrothion and Spinosad on Certain Biochemical Systems of Male Albino Rats

Sulaiman, A. A.; D. H. Al Rajhi and A. Kmei

ABSTRACT

Toxicological effects of sub-lethal doses (1/10th of LD₅₀ and initial residues) of pyriproxyfen, fenitrothion and spinosad were studied in male albino rats. The ratio of certain organ to body weight, some blood components and enzyme activities (plasma cholinesterase and alkaline phosphatase) were determined. One tenth of the LD₅₀ of the three insecticides showed a significant decrease in the weight of kidneys, and spleen of the tested animals with respect to the total weight, while there was no significant change in the weight of the liver with respect to the total weight. Regarding the initial deposits of the three insecticides, the results showed that there was no significant difference on the ratio of liver to total body weight for spinosad and fenitrothion, while the initial deposit of pyriproxyfen showed a significant decrease in the weights of liver, spleen and kidney with respect to the total body weight.

One tenth of the LD₅₀ had insignificant effect for the insecticides fenitrothion and spinosad mostly on the number of red and white blood cells counts, while the dose of pyriproxyfen significantly reduced the number of white cells from 13 x 10⁵ cell/ml in the control treatment to 4.3x10⁵ cell/ml. The three insecticide treatments showed a significant increase in hemoglobin in comparison to the control. There was no significant effect for both doses of 1/10th the LD₅₀ and the initial deposit on Hematocrit concentration and the average volume of the red blood cells, except for the doses 1/10th of the LD₅₀ of spinosad and initial deposit of fenitrothion in which there was a significant increase in the average volume of the red cells in comparison to the control.

The two doses of insecticides showed a little inhibition of cholinesterase activity which ranged from 9.61 to 38.46% for both doses of the three insecticides. A significant increase in the activity of the enzyme alkaline phosphatase was recorded. Creatinine level was increased when animals were treated with both doses of pyriproxyfen. Fenitrothion treatment showed a decrease in creatinine level. The treatment of 1/10th of LD₅₀ of spinosad did not affect the level of creatinine, while the initial residue of spinosad showed a significant increase with respect to the control.

Keywords: Hematological parameters, Male albino rats, Alkaline phosphatase, Cholinesterase.

INTRODUCTION

Pesticides are occasionally used indiscriminately in large amounts causing environmental pollution. Residual amounts of organophosphate (OP) and organochlorine (OC) pesticides have been detected in the soil, water, vegetables and grains and other food products (John et al., 2001). Toxicities of OP pesticides cause adverse effects on hematological and biochemical parameters (De Blaquiere et al., 2000). Pyriproxyfen is an OP insecticide used to control a variety of insects. It has been widely used throughout the world with applications in agriculture and horticulture for controlling insects in crops (Shioda et al., 1993). OP is known to cause inhibition of acetylcholinesterase (AChE) activity in the target tissues (Kappers et al., 2001). Pyriproxyfen is IGRs with a different mode of action, commonly used in crops to control lepidopteran pests. Spinosad is biopesticides isolated from a soil actinomycete and found to have a new neurotoxic mode of action (Yeh et al., 1997). Toxicity of pesticides affects many organs, particularly, brain, liver and kidney. Bagchi et al., 1992 and El-Shahawi and Al et al., 1999, reported an increase in liver and spleen related with body weight when rats and mice treated with endrin and acetamiprid. El-Gendy (1991), reported decrease in the body weight and spleen and an increase in the ratio of liver, kidney and brain related to body weight. Radwan et al (2001), reported that 1/10 of LD₅₀ of pyriproxyfen, azdichrin and fenitrothion increased the blood components of WBC and RBC. Also, Al-Rajhi et al. (1999), showed an increase of WBC & MCV and slight decrease of RBC & hematocrite percentage, while hemoglobin concentration did not affected after diazinon and pirimiphos-methyl treatments. Plasma cholinesterase (ChE) was inhibited while Alkaline phosphatase (ALP) increased in the rat serum when rat treated with sub lethal doses of Organophosphates (Op) (El-Elaimy et al., 1988). Abdel-Megeed et al. (2001) mentioned that the 1/10th of LD₅₀ of fenitrothion decreased the ALP of rat while azdichrin and pyriproxyfen increased the activity of the enzyme. Radwan et al. (2001) reported that male rat that treated orally with 1/10th of LD₅₀ of fenitrothion, cypermethrin and pyroproxyfen increased the level of creatinine content. Also, Abd El-Aziz (2000) and El-Aswad (2001) reported an increase of creatinine level in serum of rat that treated with Op and carbamates. The chlorpyrifos exposure caused excess of weight gain in males beginning at postnatal day (PND) 45 and reaching

1Plant Protection Dept. College of Food and Agriculture Sciences, King Saud University, Riyadh Received December 3, 2008, Accepted December 21, 2008
levels 10.5% above control by PND 72 (Lassiter and Brimijoin, 2008).

The aim of this work was to study the toxicological effects of sub lethal doses of pyriproxyfen, fenitrothion and spinosad on certain biochemical systems of male albino rats.

MATERIALS AND METHODS

Animals:

Male albino rats, Rattus ratus norvigenous (170-180 gm) were obtained from Faculty of Pharmacy, King Saud University. Animals were housed in stainless steel cages and provided with food and water ad lib. All animals were maintained on 12 h light/12 h dark cycle at constant temperature (22 ± 1.0 °C).

Chemicals:

The following insecticides were purchased locally and used. Admiral (pyriproxyfen, 10% EC, Sumitomo Co.); Sumithion (fenitrothion, 50% EC, Sumitomo Co.) and Tracer (spinosad, 48 % SC, Dow Agrosciences Co).

Experimental protocol:

Rats were divided randomly into 7 groups each of 9 rats. Group 1. control treated with tap water once a week. Group 2. treated with 1/10 LD50 of pyriproxyfen (500 mg /kg b.w) once a week for four weeks. Group 3. treated with initial residue of pyriproxyfen (6.71 mg/kg b.w) daily for one month. Group 4. treated with 1/10 LD50 of fenitrothion (24 mg /kg b.w) once a week for four weeks. Group 5. treated with initial residue of fenitrothion (3.48 mg/kg b.w) daily for one month. Group 6. treated with 1/10 LD50 of spinosad (500 mg/kg b.w) once a week for four weeks. Group 7. treated with initial residue of spinosad (0.52 mg/kg b.w) daily for one month. All doses were provided orally using stomach tubes. All animals were weighed at the beginning and the end of experiment and the change of body weight were determined. Organ weight index of lymphatic organ (spleen), parenchymatous organs (liver and kidney) were weighed and calculated as weight indices as organ body weight ratio according to Bronisz et al., (1992).

Hematological studies:

Five rats from each group were randomly selected after one month from treatments and anesthetized with Et2O and blood was withdrawn via retro-orbital plexus using a heparinized microcapillary tube (El-Shahawi, 1996). Blood samples were collected from each animal in 5 ml citrated tubes containing anticoagulants (120 mM trisodium citrate). Red blood cell (RBC), Hemoglobin (HGB) concentration, Hematocrite concentration (HCT) and mean cell volum (MCV) were measured using Hemacomp 5 instrument.

Enzyme assay:

Cholinesterase (CHE) activity in plasma was determined according to (Knedel and Bottler (1967) using butyryl thiocholine as substrate. Alkaline phosphatase (ALP) in plasma was determined according to REC. GS.CC (DGKC), 1972, using p-nitrophenyl phosphate as substrate. Creatinine concentration was determined according to Schirmeister et al., (1964).

Analysis of data:

The data was subjected to statistical analysis (Snedecor and Cochran, 1967).

RESULTS AND DISCUSSION

Body organs and Hematological studies:

The toxicological effect of 1/10th of LD50 and initial residues of pyriproxyfen, fenitrothion and spinosad on the ratio of certain organ to body weight of male albino rate was shown in Table (1). The dose of 1/10th of LD50 of pyriproxyfen (500mg/kgbw), fenitrothion (24mg/kgbw) and spinosad (500mg/kgbw) was found to decrease the percentage of weight gain of the tested animals significantly. The initial residue of spinosad (0.52 mg/kg) and pyriproxyfen (6.7 mg/kg) showed a significant decrease in the gain of weight percentage compared to the control, while the initial deposit of fenitrothion (3.48 mg/kg) show a significant increase on weight gain percentage. One tenth of the LD50 of the three insecticides showed significant decrease in the weight of kidneys and spleen of the tested animals with respect to the total weight, while there was no significant change in the weight of the liver with respect to the total weight. Regarding the initial deposits of the three insecticides, the results showed that there was no significant difference on the ratio of liver to total body weight for spinosad and fenitrothion treatments, while the initial deposit of pyriproxyfen showed a significant decrease in the weights of the three organs with respect to the total body weight. The results in agreement with that reported by (El-Gendy, 1991; Bronisz et al, 1992, Al-Rajhi et al., 1999 and El-Shahawi et al., 1999) they found a decrease in spleen and liver when treated with sub lethal doses of pesticides. In contrast, Neskovic et al., 1989 pointed to an increase of spleen when rat treated with pirimiphos-methyl. Moreover, El-Aswad (2001), reported non significant increase of spleen when rats treated daily for 90 days with sub lethal doses of pirimiphos-methyl and profenfos. The chlorpyrifos exposure caused excess weight gain in males beginning at postnatal day (PND) 45 and reaching levels 10.5% above control by PND 72 (Lassiter and Brimijoin, 2008).
The side effect of the two doses of insecticides on some enzyme activity was also studied (Table 3). There was little inhibition of the activity of the enzyme cholinesterase (ChE) in rat plasma which ranged from 9.61 to 38.46% for both doses of the three insecticides. There was significant increase in the activity of the enzyme alkaline phosphatase (ALP) in rat plasma which reached more than three folds of the control treatment for 1/10th of the LD₅₀ dose of spinosad. The concentration of creatinine was increased with respect to the control treatment when animals were treated with both doses of pyriproxyfen. The treatment of fenitrothion showed decrease in the creatinine concentration. The treatment of 1/10th of LD₅₀ of spinosad did not affect the concentration of creatinine, while the initial residue of spinosad showed significant increase in creatinine concentration with respect to the control. The results in agreement with that reported by Davis and Holub (1980) and El-Bakry (1994) in which the plasma ChE activity in rat decreased as a results of sub lethal treatment with insecticides. El-Elaimy et al., (1988); Abd-El-Aziz (2000) and Abdel-Megeed et al., (2001) reported an increase in ALP activity after insecticide treatments. In the case of creatinine concentration the obtained results of the three insecticides in the normal range. Schirmeister et al., (1964) point that a range of 53-97 umole /L has no negative effect on human health. Yehia et al., 2007, reported that, exposed of rabbits to diazinon caused extensive changes in physiological, biochemical, and histopathological parameters as well as

Table 1. Effect of 1/10 of LD₅₀ and initial residues of pyriproxyfen, fenitrothion and spinosad on the ratio of certain organ to body weight of male albino rats

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Body weight</th>
<th>Liver weight</th>
<th>W<sup>*</sup></th>
<th>Kidney Weight</th>
<th>W<sup>*</sup></th>
<th>Spleen weight</th>
<th>W<sup>*</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>282.5 ± 11.0</td>
<td>14.49 ± 1.7</td>
<td>5.13</td>
<td>1.20 ± 0.1</td>
<td>0.42</td>
<td>1.93 ± 0.3</td>
<td>0.68</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 LD<sub>50</sub> (500mg/kgbw)</td>
<td>268.2 ± 9.2</td>
<td>13.05ab ± 0.2</td>
<td>4.87</td>
<td>1.04bc ± 0.1</td>
<td>0.39</td>
<td>0.71 c</td>
<td>0.26</td>
</tr>
<tr>
<td>Initial residue (6.7 mg/kg)</td>
<td>271.4 ± 12</td>
<td>11.72c ± 1.1</td>
<td>4.32</td>
<td>0.93c ± 0.1</td>
<td>0.34</td>
<td>1.05 b ± 0.1</td>
<td>0.39</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 LD<sub>50</sub> (24mg/kgbw)</td>
<td>266.6 ± 8.7</td>
<td>12.11 bc ± 3.2</td>
<td>4.54</td>
<td>1.04 bc ± 0.1</td>
<td>0.39</td>
<td>1.16 b ± 0.2</td>
<td>0.44</td>
</tr>
<tr>
<td>Initial residue (3.48 mg/kg)</td>
<td>308.2 ± 10.8</td>
<td>14.42 ab ± 1.5</td>
<td>4.61</td>
<td>1.09 ab ± 0.1</td>
<td>0.35</td>
<td>1.03 b ± 0.2</td>
<td>0.33</td>
</tr>
<tr>
<td>Spinosad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10 LD<sub>50</sub> (500mg/kgbw)</td>
<td>266.0 ± 8.0</td>
<td>12.76 abc ± 0.9</td>
<td>4.8</td>
<td>1.05 bc ± 0.1</td>
<td>0.39</td>
<td>1.18 b± 0.1</td>
<td>0.44</td>
</tr>
<tr>
<td>Initial residue (0.52 mg/kg)</td>
<td>279.4 ± 7.8</td>
<td>12.30 abc ± 0.7</td>
<td>4.40</td>
<td>0.97c ± 0.1</td>
<td>0.35</td>
<td>1.07 b ± 0.2</td>
<td>0.38</td>
</tr>
<tr>
<td>LSD<sub>0.05</sub></td>
<td>2.26</td>
<td>0.122</td>
<td></td>
<td></td>
<td></td>
<td>0.229</td>
<td></td>
</tr>
</tbody>
</table>

*W = (Organ weight (gm)/ Body weight (gm)) X 100.
* same litter mean no significant difference.

Toxicological effect of 1/10th of LD₅₀ and initial residues of pyriproxyfen, fenitrothion and spinosad on certain blood components of male albino rats was illustrated in Table (2). Red blood cell (RBC), white blood cell (WBC), Hemoglobin (HGB) concentration, Hematocrite concentration (HCT) and mean cell volume of red blood cell (MCV) was measured using Hemacomp 5 instrument. 1/10th of the LD₅₀ had insignificant effect for the insecticides fenitrothion and spinosad mostly on the number of RBC and WBC counts, while the dose of pyriproxyfen significantly reduced the number of WBC from 13 x 10³ cell/ml in the control treatment to 4.3X10³ cell/ml. The three insecticide treatments showed significant increase in HGB in comparison to the control. There was no significant effect for both doses; 1/10th of LD₅₀ and the initial deposit on the percentage of HCT. The average volume of the red blood cells did not affect significantly by both doses, except for the doses 1/10th of the LD₅₀ of spinosad and initial residues of fenitrothion in which there was a significant increase in the MCV in comparison to the control. The results in line with that reported by (Enan, 1976, Gupta et al., 1982), El-Bakry, 1994 and Radwan et al., (2001) they reported an increase in number of WBC in rat blood that treated with sub lethal doses of insecticides. They referred that the increase of WBC as a results of the disease effect of insecticides. In contrast, El- Khatib (1986); Rajini et al., 1987 and Al-Rajhi et al., 1999, reported decrease in RBC in rats that treated with sub lethal doses of Althrin, pirimiphos-methyl and cypermethrin.
Table 2. Effect of 1/10 of LD$_{50}$ and initial residues of pyriproxyfen, fenitrothion and spinosad on certain blood components of male albino rats

<table>
<thead>
<tr>
<th>Treatments</th>
<th>RBC 106 cell/ml</th>
<th>WBC 103 cell/ml</th>
<th>HGB gm/100ml blood</th>
<th>HCT (%)</th>
<th>MCV Micron/RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.0 ab ± 1.0</td>
<td>13.0 a ± 3.4</td>
<td>17.7b ± 5.3</td>
<td>75.4ab ± 7.5</td>
<td>81.8 c ± 2.1</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>1/10 LD$_{50}$ (500mg/kgbw)</td>
<td>7.1 b ± 1.4</td>
<td>4.3 b ± 1.4</td>
<td>23.8 a ± 2.9</td>
<td>58.5 b ± 12.3</td>
</tr>
<tr>
<td>Initial residue (6.7 mg/kg)</td>
<td>7.5 ab ± 0.3</td>
<td>12.5 a ± 3.8</td>
<td>25.0 a ± 0.6</td>
<td>64.5 ab ± 1.8</td>
<td>86.0 abc ± 2.8</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>1/10 LD$_{50}$ (24mg/kgbw)</td>
<td>7.5 ab ± 1.0</td>
<td>15.6 a ± 3.8</td>
<td>22.4 a ± 6.0</td>
<td>63.5 b ± 7.3</td>
</tr>
<tr>
<td>Initial residue (3.48 mg/kg)</td>
<td>8.4 a ± 0.6</td>
<td>15.7 a ± 3.3</td>
<td>26.0 a ± 6.0</td>
<td>73.9 a ± 5.5</td>
<td>89.6 a ± 5.0</td>
</tr>
<tr>
<td>Spinosad</td>
<td>1/10 LD$_{50}$ (500mg/kgbw)</td>
<td>7.7 ab ± 0.5</td>
<td>14.1 a ± 2.4</td>
<td>24.6 a ± 0.5</td>
<td>67.3 ab± 3.4</td>
</tr>
<tr>
<td>Initial residue (0.52 mg/kg)</td>
<td>7.7 ab± 1.2</td>
<td>14.0 a ± 3.6</td>
<td>25.7 a ± 1.8</td>
<td>65.6 ab ± 8.8</td>
<td>85.7 abc ± 4.7</td>
</tr>
<tr>
<td>LSD$_{0.05}$</td>
<td>1.18</td>
<td>4.15</td>
<td>4.28</td>
<td>9.58</td>
<td>4.63</td>
</tr>
</tbody>
</table>

Red blood cell (RBC), white blood cell (WBC), Hemoglobin (HGB) concentration, Hematocrite concentration (HCT)and mean cell volume (MCV).

*same letters mean no significant difference.

Table 3. Effect of 1/10 of LD$_{50}$ and initial residues of pyriproxyfen, fenitrothion and spinosad on creatinine concentration, Choline esterase and alkaline phosphatase activities in blood plasma of male albino rats

<table>
<thead>
<tr>
<th>Treatments</th>
<th>*ChE activity (unit/L)</th>
<th>% Activity of control</th>
<th>**ALP</th>
<th>% Activity of control</th>
<th>***Creatinine concentration</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1524.9 ± 165.9</td>
<td>100</td>
<td>60.1 ± 21.3</td>
<td>100</td>
<td>66.95 ± 13.6</td>
<td>100</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>1/10 LD$_{50}$ (500mg/kgbw)</td>
<td>1231.7 ± 126.7</td>
<td>80.73</td>
<td>88.0 ± 28.0</td>
<td>146.4</td>
<td>102.55± 15.2</td>
</tr>
<tr>
<td>Initial residue (6.7 mg/kg)</td>
<td>1192.6 ± 27.6</td>
<td>78.21</td>
<td>94.9 ± 13.7</td>
<td>157.9</td>
<td>100.71 ± 6.1</td>
<td>150.4</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>1/10 LD$_{50}$ (24mg/kgbw)</td>
<td>938.4 ± 37.1</td>
<td>61.54</td>
<td>156.8 ± 68.5</td>
<td>260.9</td>
<td>57.93 ± 6.1</td>
</tr>
<tr>
<td>Initial residue (3.48 mg/kg)</td>
<td>938.4 ± 71.8</td>
<td>61.54</td>
<td>138.6 ± 22.4</td>
<td>230.6</td>
<td>61.11 ± 7.9</td>
<td>91.3</td>
</tr>
<tr>
<td>Spinosad</td>
<td>1/10 LD$_{50}$ (500mg/kgbw)</td>
<td>1378.3 ± 50.8</td>
<td>90.39</td>
<td>189.8 ± 37.8</td>
<td>315.8</td>
<td>66.75 ± 10.2</td>
</tr>
<tr>
<td>Initial residue (0.52 mg/kg)</td>
<td>1202.3± 97.3</td>
<td>78.84</td>
<td>156.8 ± 37.8</td>
<td>260.9</td>
<td>73.94 ± 6.5</td>
<td>110.44</td>
</tr>
</tbody>
</table>

*Normal value of Ch E activity at 25 °C (3500-8500 Unit/L)
**Normal value of ALP activity at 25 °C (60-170 Unit/L)
***Normal concentration of creatinine 25 °C (53-97 uMole/L)

hypothesis of AChE. So, contact exposure of diazinon leads to negative response on animal health.

It could be concluded that the three insecticide treatments at the applied doses had no severe effect on kidney, liver and/or the enzyme activities and do not pose threat to human health since there activities are still within the normal ranges. Also, the insecticide treatments do not pose a health threat to humans regarding the concentration of creatinine since the concentration of creatinine was still within the normal range, except the 1/10th dose of LD$_{50}$ of pyriproxyfen (102.52 umole/L) and the initial deposit of the same insecticide (100.71 umole/L).
AKNOWLEDGEMENT

The authors would like to thank King Abdullah Aziz City for Sciences and Technology for financial support of research No. AT-11-132 Permission No. 67715/60

REFERENCES

الملخص العربي

تأثير جرعات تحت مميتة من البيريوكسيفين والفينتروثيون والسبينوساد على بعض النظم البيوكيميائية لدى ذكور فئران الألبينو

سليمان بن عبد الكريم بن علي المجدي، ضيف الله بن هادي الرجوي، علاء صلاح الدين كامل

تم دراسة تأثيرات التوكسيكولوجية للجرعات تحت المميتة (عشر الجرعة المميتة ل 50% من الفئران) على المنظمات الأساسية في الكبد والينتامات الالمنية (البيضاء) من الفئران الألبينو عن طريق الفروضولات والسبينوساد على ذكور الفئران من النوع الألبينو. تم تقدير نسبة التغير في بعض الأعضاء إلى وزن الجسم وبعض مكونات الدم ونشاط إنزيم الكولين أكسيوز في الدموما والفوسفاتاز القاعدي. أظهر عشر الجرعة المميتة ل 50% من المبيدات الثلاث خفض في وزن كل من الكبد والطحال والثدي. أظهرت تأثيرات تنبتية طفيفة على نشاط الكولين أكسيوز بالرغم من أن جرعة 0.5% من المبيدات تؤثر على نشاط إنزيم الفوسفاتاز القاعدي. أظهرت جرعة 1% من السبيوساد خفض في مستوي الكريبتينين. وفي جرعة 2% بيريوكسيفين تم تأثير على مستوي الكريبتينين. ولم تؤثر جرعة 0.5% من الفينتروثيون. تأثيرات تنبتية ملحوظة في مستوي الكريبتينين من السبيوساد والبيريوكسيفين. غير معنوية على أعداد كل من كرات الدم الحمراء والبيضاء.